# Nanoelectronics: Nanowires, Molecular Electronics, And Nanodevices LINK

Semiconductor nanowires are quasi-one-dimensional nanomaterials that have sparked a surge of interest as one of the most powerful and versatile nanotechnological building blocks with actual or potential impact on nanoelectronics, photonics, electromechanics, environmentally friendly energy conversion, biosensing, and neuro-engineering technologies. googletag.cmd.push(function() googletag.display('div-gpt-ad-1449240174198-2'); ); Bottom-up synthesis of nanowires through metal-catalyzed vapor phase epitaxy is a very attractive process to generate high-quality nanowires thus providing an additional degree of freedom in design of innovative devices that extend beyond what is achievable with the current technologies. In this nano-fabrication process, nanowires grow through the condensation of atoms released from a molecular vapor (called precursors) at the surface of metallic nano-droplets. Gold is broadly used to form these nano-droplets. This self-assembly of nanowires takes place spontaneously at optimal temperature and vapor pressure and can be applied to synthesize any type of semiconductor nanowires. However, to functionalize these nanomaterials a precise introduction of impurities is central to tune their electronic and optical properties. For instance, the introduction of group III and V impurities in a silicon lattice is a crucial step for optimal design and performance of silicon nanowire technologies. The accurate control of this doping process remains an outstanding challenge that is increasingly complex as a result of the relentless drive toward device miniaturization and the emergence of novel nanoscale device architectures.In a recent development, a team of scientists from Polytechnique MontrÃ©al (Canada), Northwestern University (USA), and Max Planck Institute of Microstructure Physics (Germany) led by Professor Oussama Moutanabbir has made a fascinating discovery of a novel process to precisely functionalize nanowires. By using aluminum as a catalyst instead of the canonical gold, the team demonstrated that the growth of nanowires triggers a self-doping process involving the injection of aluminum atoms thus providing an efficient route to dope nanowires without the need of post-growth processing typically used in semiconductor industry. Besides the technological implications, this self-doping implies atomic scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. The scientists investigated this phenomenon at the atomistic-level using the emerging technique of highly focused ultraviolet laser-assisted atom-probe tomography to achieve three-dimensional atom-by-atom maps of individual nanowires. A new predictive theory of impurity injections was also developed to describe this self-doping phenomenon, which provides myriad opportunities to create entirely new class of nanoscale devices by precisely tailoring shape and composition of nanowires.The results of their breakthrough will be published in Nature. More information:dx.doi.org/10.1038/nature11999Journal information:Nature

## Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices

**Download File: **__https://www.google.com/url?q=https%3A%2F%2Furlin.us%2F2tOHzD&sa=D&sntz=1&usg=AOvVaw2kSo3H9Cp4jNdU_v4k8ave__

Ray LaPierre attended Dalhousie University (Halifax, Nova Scotia, Canada) where he obtained a B.Sc. degree in Physics in 1992. He then completed his M.Eng. degree in 1994 and Ph.D. degree in 1997 in the Engineering Physics Department at McMaster University (Hamilton, Ontario, Canada). His graduate work involved development of molecular beam epitaxy of InGaAsP alloys for laser diodes in telecom applications. Upon completion of his graduate work in 1997, he joined JDS Uniphase (Ottawa, Ontario, Canada) where he developed dielectric coatings for wavelength division multiplexing devices. In 2004, he rejoined McMaster University as an Assistant Professor in the Engineering Physics Department. He is currently Professor and Chair in the Engineering Physics Department with interests in III-V nanowires, molecular beam epitaxy, and applications in photovoltaics, photodetectors and quantum information processing. He has over 98 publications, 50 invited presentations, and 138 conference presentations related to nanowires. He is also a Board Member of the journal Nano Express.

Yamina AndrÃ©, UniversitÃ© Clermont Auvergne, FranceEpitaxy, nanowires, semiconductors, vapor phase growth modeling, kinetics and thermodynamis in growth process, selective area growth, nanodevices based on nanowires

A large number of complex supramolecular assemblies have already been constructed.[16-18] A simple complex between cation and crown ether is one of the typical model systems of supramolecules[25,26] (Fig. 4). Crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6 have hydrophilic cavity to bind cation through metal-oxygen interatomic interactions. According to the size of hydrophilic cavity, cations can be selectively included into the cavity. For example, 15-crown-5 and 18-crown-6 molecules show high Na+ and K+ affinity, respectively. We already introduced two design concepts of molecular conductors and LB technique to fabricate molecular-assembly nanowires. For an effective design of molecular nanowires, we further introduced the supramo-lecular approach to obtain nanowire orientation on the substrate surface.

With that explosion of research interest has come a parallel explosion of "nano" terminology. Sometimes it seems as though every word in the scientific and engineering lexicons has had the prefix "nano" stuck onto it by a trendy researcher. Thus, we have nanotubes, nanomaterials, nanostructures, nanodevices, nanowires, nanoparticles, nanobiotechnology, and so on, all referring to artifacts on the 1-100 nanometer dimensions as in the OED definition. There is a temptation for a searcher using online catalogs, databases or full-text sources to try to do a comprehensive search using nano* as the search term. However, this is unwise -- the term "nanometer" (or "nanometre" in the UK) is a commonly-used unit of measure for wavelengths of light and may appear in articles having nothing to do with nanotechnology, even in a very broad sense. The searcher is far better off to identify the specific "nano" terms, which are applicable for the desired search.

Beyond the array of "nanothis" and "nanothat," there are some other key concepts in specific areas of nanotechnology that are worth knowing. For example, in nanoelectronics, the terms quantum dot and quantum wire are frequently encountered. These terms refer to structures of conductors or semiconductors whose dimensions are so small that quantum mechanical effects cause electrons to behave as if they were confined to a point or a line, respectively, with very different behaviors than in the exact same material in the bulk state. The term molecular electronic devices is also frequently used in nanoelectronics.

Strongly correlated electron systems exhibit a fascinating and diverse range of physical phenomena.Quantum many-body effects can result in collective, emergent behavior quite different from that of theindividual constituents, moving independently or treated classically. Experiment and theory advance complimentary aspects of our understanding of thiscomplexity. Computational studies make the link between new theoretical concepts, and experimental observations of new phenomena.The major themes of my recent research are described below. A full list of publications can be found here. Correlated molecular electronicsMolecular electronics offers unique scientific and technological possibilities, which result from both the nanometer scale of the devices and their chemical complexity. In addition to the continual drive toward miniaturization, new functionality can be exploited when electronic components are built from single molecules because the laws of quantum mechanics govern their basic properties.Recent advances in the construction and characterization of molecular devices have brought the exciting possibility of molecular electronics within close reach. Break-junctions in nanowires can be bridged by a single molecule to complete an external electronic circuit. A voltage bias across source and drain electrodes drives a current through the molecular junction which is characteristic of the structure of the bridging molecule and its contacting geometry. Intense experimental research into the structure-function relation has demonstrated the versatility of molecular devices and the technological utility of new design concepts.Part of my current work involves exploring the rich new physics due to strong electronicinteractions in these molecular electronics devices.Quantum dot nanodevicesQuantum dot devices exhibit a fascinating range of strongly-correlated electron physics. At low temperatures in particular, Kondo physics can dramatically change the observable transport properties. Coupled quantum dot devices offer advanced functionality due to the interplay between orbital/geometrical effects, spin and Kondo physics. New screening mechanisms and quantum phase transitions can be realized, and distinctive signatures manifest in conductance.In two-dot systems, there is a complex competition between renormalized dot-lead interactions due to the Kondo effect, and the tendency to form localized inter-dot bound states due to direct exchange or indirect RKKY interactions:Europhys. Lett. 76, 95 (2006)Phys. Rev. Lett. 106, 147202 (2011)Phys. Rev. Lett. 108, 086405 (2012)Phys. Rev. B 85, 235127 (2012)Phys. Rev. B 91, 235127 (2015)Phys. Rev. B 92, 155104 (2015) In the case of three dots, new possibilities arise -- in particular, geometrical frustration in triangular triple dots can produce new quantum phase transitions, accompanied by conductance switching; while in series, triple dots can realize multi-stage Kondo screening and incipient non-Fermi liquid physics:Phys. Rev. B 79, 085124 (2009)Phys. Rev. B 81, 075126 (2010)Phys. Rev. B 84, 035119 (2011)J. Phys. Chem. B 117, 12777 (2013)Phys. Rev. B 89, 121105(R) (2014)Multi-channel Kondo and critical non-Fermi liquidsThe simplest system exhibiting non-Fermi liquid (NFL) behavior is arguably the two-channel Kondo (2CK) model, describing the frustrated antiferromagnetic coupling of a local spin-1/2 dot to two equivalent but independent conduction electron leads. The resulting ground state possesses various intriguingproperties, including notably a residual entropy of (kB/2) ln(2) and conductance that approaches its T=0 value as the square root of T. A different type of frustrationarises in the two-impurity Kondo (2IK) model, which features two exchange coupled quantum dots, each also coupled to its own lead. We showed that the quantum phasetransitions and critical points of both systems are related:Phys. Rev. Lett. 108, 086405 (2012)Indeed, the same critical physics can be realized in all spin-S variants. Furthermore, generalized 2CK physics arises in serial devices with a chain comprising an odd number of dots, while 2IK physics appears when there are an even number of dots:Phys. Rev. B 84, 035119 (2011)Quantum dot rings also show the same behaviour:Phys. Rev. B 81, 075126 (2010)This fascinating non-Fermi liquid physics has recently been observed experimentally in quantum dot devices:Nature 446, 167 (2007)Nature 526, 233 (2015)Most intriguingly, when the device is detuned away from the critical point by symmetry-breaking perturbations (naturally present in experiments), a highly non-trivial and universal crossoverto the low-temperature Fermi liquid state is found. By exploiting a mapping to a 2d boundary Ising model, we developed an exact theory for the crossover, including the full temperature-dependence of conductance:Phys. Rev. Lett. 106, 147202 (2011)Phys. Rev. B 85, 235127 (2012)Our universal Fermi liquid crossover was very recently confirmed in state-of-the-art experiments at Stanford:Nature 526, 237 (2015)Real-space Kondo correlationsMost fundamental aspects of the Kondo effect are bynow very well understood, with various detailed theoreticalpredictions having been confirmed directly by experimentson impurity systems or quantum dot devices. Key insightsinto the underlying physics have been provided by therenormalization group (RG) concept, where progressivereduction of the temperature results inRG flow between 'fixed points' that can be easilyidentified for a given model.Surprisingly however, the basic physics in real-spaceis still quite controversial. From theory, there is the general notion of a 'Kondo Screening Cloud' -- a macroscopic real-space region of the metallic host around a magnetic impurity, inside which electrons bind to and dynamically screen the impurity spin. However, no real-space signatures of the Kondo Cloud have ever been observed experimentally. In a 1d wire system hosting an impurity (realized e.g. in a carbon nanotube quantum dot), we showed exactly and explicitly that the RG flow between fixed points can be observed in the real-space evolution of physical quantities, such as Friedel oscillations. The impurity is rather surrounded by different fixed point clouds. The Kondo cloud itself is really of local moment character; Kondo screening occurs on flowing to the strong coupling cloudat larger distances. This work is published here:Phys. Rev. B 84, 115120 (2011)In ongoing work, we are studying real-space Kondo cloud correlations in a range of nanoscale impurity and quantum dot systems. We are also seeking a viable proposal for the first experimental observation of the Kondo cloud.Kondo effects in unconventional materialsWe have studied unusual and exotic Kondo effects arising in a range of unconventional materials and devices, as summarized below.Very recently, new three-dimensional Dirac semimetal (such as Na3Bi and Cd3As2) and Weyl semimetal (such as TaAs and NbAs) systems have been discovered. The 3d Dirac cone structure leads to a host of interesting physics. In particular, the node separation in Weyl semimetals leads to surface Fermi arcs and the 'chiral anomaly'. We studied the effect on electronic scattering and scanning tunneling spectroscopy of magnetic impurities in these systems, showing that different Kondo variants and pseudogap quantum phase transitions can be realized:Phys. Rev. B 92, 121109(R) (2015)Nanowire/superconductor heterostructures have also been the focus of much attention recently, because they host topologically-protected fractionalized particles called Majorana fermions. One fascinating consequence of this is that real fermionic modes can be reconstructed from spatially-separated Majoranas, producing non-local qubits which are impervious to decoherence from local perturbations. Thus, such systems might find important application within fault-tollerant quantum computation.However, the key role of interactions has not been fully explored. We studied the 'Topological Kondo Effect' in arising in such systems, elucidating overscreening mechanisms and calculating numerically exactly the full conductance lineshapes expected in experiment:Phys. Rev. B 89, 045143 (2014)Defects in the honeycomb lattice of graphene are known to induce local moments and strong correlation effects. Distortions due to structural reconstruction around vacancies in graphene can be formulated in terms of an effective model consisting of a localized sigma-level hybridized with the pi-band. we analyze the rich quantum impurity physics of this system focusing on the special role played by the unusual local density of states, which is enhanced at low energies due to potential scattering. Depending on microscopic parameters controlled by the physical corrugations, the system can host either an exactly-screened spin-1/2 (doublet) Kondo stateor an underscreened spin-1 (triplet) Kondo state:Phys. Rev. B 88, 075104 (2013)The generalized powerlaw Kondo physics of defective graphene systems was analyzed in detail both analytically and numerically in: Phys. Rev. B 88, 195119 (2013)The metallic surface of three-dimensional topological insulators such as Bi2Te3 feature a non-trivial locking of spin and momentum. One important consequence is that static impurities (potential defects) cannot cause backscattering, because there is no local spin-flip mechanism. Scalar disorder therefore does not cause localization or impede current flow. By contrast, magnetic impurities, which have a dynamic internal spin degree of freedom, do allow backscattering. Indeed, scattering is renormalized by interactions due to the Kondo effect. But how does the peculiar structure of the topological insulator surface affect Kondo physics? What are the experimental signatures in scanning tunneling spectroscopy and quasiparticle interference? These questions are answered here:Phys. Rev. B 87, 075430 (2013)Scanning tunneling spectroscopy (STS) and Quasiparticle interference (QPI)Defects or impurities in materials cause electronic scattering effects that can be locally observed experimentally using a scanning tunneling spectroscopy. By rastering the STM across a surface, a spatial electronic density map can be built up. Its Fourier transform (FT-STS) can be interpretted in terms of quasiparticle interference (QPI). In the case of magnetic impurities in particular, electronic scattering is characterized by non-trivial dynamics due to strong correlations and Kondo physics.The local STS dynamics of distorted trimeric impurity clusters were studied in:J. Phys. Chem. B 117, 12777 (2013)The general theory of QPI due to Kondo impurities on the surface of various materials was formulated in:Phys. Rev. B 92, 035126 (2015)We studied the Kondo-RKKY interplay for multiple magnetic impurities on the surface of 3d host metals, calculating exactly the STS response and QPI patterns:Phys. Rev. B 91, 235127 (2015)QPI patterns due to Kondo impurities were also calculated on the surface of 3d topological insulators (including cubic warping effects):Phys. Rev. B 87, 075430 (2013)STS signatures of magnetic impurities in 3d Dirac and Weyl semimetals were discussed here:Phys. Rev. B 92, 121109(R) (2015)Development of numerical methodsThe Numerical Renormalization Group (NRG) is a powerful method for solving quantum impurity problems, which themselves describe a diverse range of systems including interacting nanostructures, molecular electronics devices, and correlated materials within DMFT. Thermodynamic and dynamical quantities can be obtained accurately and efficiently in the state-of-the-art implementation, on essentially any energy or temperature scale. However, the exponential scaling of the method with the number of conduction electron channels/bands has previously prevented application to problems involving three or more bands. This limitation was partially overcome by our breakthrough in:Phys. Rev. B 89, 121105(R) (2014)Our new method allows a wider range of problems to be studied exactly with NRG. The method involves mapping the multiple channels to a single interleaved Wilson chain.This may be important for solving within DMFT multi-band lattice problems --- such as the Hubbard-Kanamori model of the open-shell transition metal oxides.More complex problems involving many interacting degrees of freedom remain beyond reach of NRG, however. Examples include many-impurity systems, complex molecules on surfa